

расходомер-счетчик электромагнитный ВЗЛЕТ СК

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Часть II ШКСД.407212.009 РЭ

Россия, Санкт-Петербург

Сделано в России

Система менеджмента качества АО «Взлет» сертифицирована на соответствие ГОСТ Р ИСО 9001-2015 (ISO 9001:2015)

* * *

АО «Взлет»

ул. Трефолева, 2 БМ, г. Санкт-Петербург, РОССИЯ, 198097

E-mail: mail@vzljot.ru

www.vzljot.ru

Call-центр 🕿 8 - 8 0 0 - 3 3 3 - 8 8 8 - 7

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. УПРАВЛЕНИЕ РАСХОДОМЕРОМ	5
2. НАСТРОЙКА ПЕРЕД РАБОТОЙ	6
2.1. Установка параметров связи с ПК	6
2.2. Чтение и запись параметров	8
2.3. Настройка параметров измерения расхода	8
2.4. Установка параметров универсального выхода	12
2.5. Установка параметров связи прибора	17
2.6. Ввод пароля	18
3. ПОРЯДОК РАБОТЫ	20
3.1. Индикация измеряемых параметров	20
3.2. Контрольные параметры расходомера	23
4. СОХРАНЕНИЕ И ВОССТАНОВЛЕНИЕ КОНФИГУРАЦИИ РАСХОДОМЕРА.	25
4.1. Порядок работы при сохранении и восстановлении	
конфигурации расходомера	25
4.2. Журнал действий пользователя (функция регистрации)	28
5. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ	29
ПРИЛОЖЕНИЕ А. Типовые значения установочных параметров	31

Настоящий документ распространяется на расходомер-счетчик электромагнитный «ВЗЛЕТ СК» и предназначен для ознакомления с порядком его использования по назначению.

В связи с постоянной работой над усовершенствованием прибора, в расходомерах возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности прибора.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

- DN диаметр номинальный;
- НС нештатная ситуация;
- ПК персональный компьютер.

1. УПРАВЛЕНИЕ РАСХОДОМЕРОМ

 Управление работой расходомера может осуществляться с помощью персонального компьютера по последовательному интерфейсу RS-485.

Возможности пользователя при управлении определяются установленным уровнем доступа (режимом) расходомера.

Для управления расходомером с персонального компьютера, на нем должна быть установлена программа «Универсальный просмотрщик». Программа содержит пакет мониторов, в том числе, «Монитор Взлет СК», и доступна для загрузки с сайта по адресу www.vzljot.ru.

- 1.2. В расходомере предусмотрено три режима:
 - НАСТРОЙКА режим юстировки (калибровки) и поверки;
 - СЕРВИС режим подготовки к эксплуатации;
 - РАБОТА эксплуатационный режим (режим пользователя).
- 1.3. Режимы СЕРВИС и НАСТРОЙКА отличаются возможностями модификации установочных параметров прибора. Модификация осуществляется программно по интерфейсу RS-485 с помощью адаптера USB-RS232\485, поставляемого по заказу.
- 1.4. В режиме НАСТРОЙКА производится настройка прибора в процессе его изготовления и юстировка (калибровка) при поверке.

Режим СЕРВИС устанавливается в расходомере при выпуске из производства со значением пароля – «**0**». После ввода пароля и перезапуска расходомер переходит в режим РАБОТА. После этого вход в режим СЕРВИС осуществляется только по паролю в программе «Монитор Взлет СК» (см. п.2.6).

В режиме СЕРВИС возможна модификация:

- параметров связи прибора по интерфейсу RS-485;
- отсечек по измерению расхода;
- параметров работы фильтра и автомата установки расхода;
- настроек обнаружения воздействия магнитом и контроля загрязнения электродов;
- параметров и режимов работы универсального выхода.
- 1.5. В режиме РАБОТА модификация никаких параметров невозможна.

2. НАСТРОЙКА ПЕРЕД РАБОТОЙ

2.1. Установка параметров связи с ПК

2.1.1. Запуск инструментальной программы «Монитор Взлет СК»

Подключить выход интерфейса RS-485 расходомера штатным кабелем ко входу адаптера USB-RS232\485, поставляемого по заказу. Подключить выход адаптера к USB-порту персонального компьютера.

ПРИМЕЧАНИЕ. Перед использованием адаптера USB-RS232\485 необходимо установить программу – установщик драйвера адаптера с сайта **www.vzljot.ru**, а также настроить виртуальный СОМ-порт ПК.

Запустить на ПК программу «Универсальный просмотрщик». В появившемся окне программы (рис.1) из меню выбрать **Проект \ Открыть** и запустить файл программы «Монитор Взлет СК» (далее – «Монитор») из папки, в которую он был скачан при установке на ПК программы «Универсальный просмотрщик».

🕼 Униве	рсальный про	смотрщик I	ModBus				
Проект	<u>С</u> оединение	Графики	Архивы	С <u>е</u> рвис	Окно	П <u>о</u> мощь	

Рис.1. Вид строки меню программы «Универсальный просмотрщик».

На экране монитора ПК появится основное окно программы «Монитор» (рис.2), содержащее вкладки измерительных и установочных параметров.

• Монитор ВЗЛЕТ СК, версия 1.4	x
Измерения Настройки Периферия Архивы Контрольная информация Параметры программы	
Канал связи Настройка соединения	
Параметры программы	
Адрес прибора	
Ожидание ответа, мс 2000	
Число попыток запроса 2	
Опроекте	
Данный проект предназначен для работы с:	
ВЗЛЕТ СК	

Рис.2. Основное окно программы «Монитор Взлет СК».

2.1.2. Настройка параметров связи программы «Монитор»

Щелкнуть мышкой по вкладке **Параметры программы** в основном окне программы «Монитор».

В группе Параметры программы (рис.3) для параметра Адрес проверить значение адреса, установленное в расходомере.

Канал связи	Настройка соединения			
Параметры программы				
Адрес прибора		1		
Ожидание ответа, мс		2000		
Число попыток	запроса	2		

Рис.3. Вид вкладки «Параметры программы».

При выпуске из производства адрес расходомера устанавливается равным 1.

Модификацию остальных установочных параметров рекомендуется выполнять только опытным пользователям.

2.1.3. Настройка параметров связи с ПК

Нажать кнопку **«Настройка соединения»** (рис.3) и в открывшемся окне **Менеджер настроек** (рис.4) установить требуемые значения параметров связи:

- Выбор транспорта тип интерфейса RS-485;
- СОМ-порт номер виртуального СОМ-порта ПК, который автоматически определяется ПК при подключении к нему адаптера USB-RS232\485;
- Скорость обмена по умолчанию в расходомере установлено значение 19200 бит/с.

Менеджер настроек	X
Выбор транспорта: RS485	•
Параметры транспорта	
СОМ-порт СОМЗ 👻	Ожидание ответа, мс 1000
Скорость обмена, бит/с 19200 💌	Количество повторов 5
	Байтовый таймаут, мс 20
🔲 🗖 Использовать DCOM	
Имя удаленного компьютера:	
OK	Применить Отмена

Рис.4. Вид окна «Менеджер настроек».

После этого нажать кнопку <**ОК**> внизу окна.

2.1.4. Установление связи с расходомером

Для установления связи ПК с расходомером нажать кнопку **«Канал связи»** на вкладке **Параметры программы** (рис.3), либо кнопку в строке состояния основного окна программы «Монитор». При удачном завершении операции в строке состояния «Монитора» должны появиться сообщения, показанные на рис.5.а.

7

🔄 Монитор ВЗЛ	ЕТ СК, версия 1.4		
* -*	Канал связи открыт Ко	оманда выполнена успешно	VZLJOT SK 41.86.00.01
	Состояние канала связ	и Результат выполнения команды	Версия ПО расходомера
	а) сообщения при у	становленной связи с	с расходомером

🔄 Монитор ВЗЛЕТ	ГСК, версия 1.4			ſ
* -*	Канал связи открыт	Прибор не отвечает	Прибор не отвечает	

б) сообщения при отсутствии связи с расходомером

Рис.5. Индикация в строке состояния основного окна программы «Монитор».

При отсутствии связи с расходомером в строке состояния основного окна программы «Монитор» будут индицироваться сообщения, показанные на рис.5.б.

В этом случае следует повторно нажать кнопку **«Канал связи»** (закрыть канал связи), проверить электрические подключения к ПК и расходомеру, а также корректность значений параметров связи. Особое внимание обратить на параметры: **Адрес**, **Выбор транспорта**, **СОМ-порт**, **Скорость обмена**.

После произведенных проверок и корректировок повторить операции, описанные в п.п.2.1.2-2.1.4.

2.2. Чтение и запись параметров

- 2.2.1. После установления связи ПК с прибором на всех вкладках основного окна программы «Монитор» становятся активными кнопки, позволяющие прочитать текущие значения измерительных и установочных параметров расходомера: «Старт чтения», «Прочитать все», «Чтение текущих значений». Нажатие на соответствующую кнопку приводит к обновлению значений параметров, индицируемых на вкладке.
- 2.2.2. Запись в расходомер значения установочного параметра после

его модификации производится по нажатию кнопки . , либо кноп-ки <Записать>.

ПРИМЕЧАНИЕ. Рекомендуется после записи значений параметров выполнить операцию чтения установленных значений с целью проверки корректности ввода данных.

2.3. Настройка параметров измерения расхода

2.3.1. Установочные параметры измерения расхода находятся на вкладке Настройки основного окна программы «Монитор» в группе Настройки измерения расхода (рис.6).

астройки измерения расход	la
Константа фильтра 6	4
Отсечки, %Qмакс По убыванию 0,0 По нара	астанию 0,0
-Автомат быстрой установки рас	хода
Быстрая установка	Вкл. 💌 🛃
Порог срабатывания, %Qмакс	5
Точка включения, %Qмакс	له 0,0

Рис.6. Вид группы «Настройки измерения расхода».

- 2.3.2. Подгруппа параметров Константа фильтра
 - Константа фильтра параметр задает время установления сигнала (длительность переходного процесса) на выходе расходомера. Возможные значения параметра приведены в табл.1.
- 2.3.3. Подгруппа параметров Отсечки, % Qмакс
 - По убыванию (По нарастанию) это пороговые значения расхода, ниже которых (при изменении расхода в большую (меньшую) сторону соответственно) отсутствует накопление объема и выдача импульсов на универсальном выходе. При этом индицируется нулевое значение расхода. Нештатные ситуации не фиксируются.

В расходомере для реверсивного потока отсечки срабатывают как при положительном, так и при отрицательном направлении потока. Сигнал направления потока также изменяется с учетом установленных отсечек.

При выпуске из производства для отсечек устанавливается типовое значение, приведенное в табл.А.З Приложения А.

2.3.4. Подгруппа параметров Автомат быстрой установки расхода

Подгруппа позволяет изменять настройки алгоритма быстрой установки расхода при его резком изменении.

- Быстрая установка включение/выключение алгоритма быстрой установки;
- Порог срабатывания, "Омакс разность расходов в процентах от максимального, сигнализирующая о необходимости включения алгоритма быстрой установки расхода.
- Точка включения, %Qмакс значение расхода в процентах от максимального, выше которого будет работать алгоритм;
- Защита от дребезга время, в течение которого должно происходить срабатывание алгоритма. Указывается в условных единицах, одна единица соответствует 1/10 секунды.

При выпуске из производства устанавливается значение константы фильтра сигнала расхода равное 6 и включается автомат

установки расхода с типовыми значениями параметров. Справочное время реакции прибора на изменение расхода при различных комбинациях параметров указано в табл.1.

Таблица 1

Константа фильтра	Время установления значения расхода, с		
сигнала расхода	Автомат включен	Автомат выключен	
0	1	1,5	
1	2	3	
2	3	6	
3	5	12	
4	6	24	
5	6	48	
6	6	96	
7	7	192	
8	8	384	

По вопросам выбора параметров фильтра и автомата установки расхода обращаться к изготовителю.

2.3.5. Подгруппа параметров Настройки определения пустой трубы

При работе с жидкостями, отличными по электрической проводимости от водопроводной воды, рекомендуется провести коррекцию значения порога срабатывания критерия «Пустая труба» по следующей методике.

- убедиться, что трубопровод целиком заполнен измеряемой жидкостью;
- на вкладке Настройки определения пустой трубы (см. рис.7) прочитать значение параметра Эталонный код ПТ в условных единицах (например, 76) и прочитать значение параметра Текущий код в условных единицах (например, 46);

Настройки определения пустой трубы				
Включение промера ПТ	Вкл. 💌	4		
Порог ПТ, %	80	4		
Текущий код	46			
Эталонный код ПТ	76			

Рис.7. Вид группы «Настройки определения пустой трубы».

 рассчитать новое пороговое значение сигнала для измеряемой жидкости по формуле:

$$\Pi = \frac{K_{T} + 0.5 \cdot (K_{\Im} - K_{T})}{K_{\Im}} \cdot 100\%,$$

где П – новое пороговое значение сигнала на пустом трубо-проводе в процентах;

К_э – эталонное (калибровочное) значение зондирующего сигнала в окне **Эталонный код ПТ**;

К_т – текущее (измеренное) пороговое значение сигнала в окне **Текущий код**.

- записать рассчитанное по формуле новое пороговое значение сигнала на пустом трубопроводе на вкладке **Порог ПТ, %**.
- 2.3.6. Подгруппа параметров Обнаружение воздействия магнитом

Данный алгоритм предназначен для исключения некорректной работы расходомера при возможном воздействии на него постоянным магнитом. В расходомере осуществляется контроль за временем фронта импульса «накачки» обмоток электромагнитов и, в случае увеличения времени фронта более установленного значения, диагностируется факт воздействия на электромагнитную систему постоянным магнитным полем.

Вкладка Обнаружение воздействия магнитом приведена на рис.8:

Обнаружение возде	ействия магнито	м	
Реакция	Регистрация	•	4

Рис.8. Вкладка «Обнаружение воздействия магнитом»

Во вкладке задается реакция расходомера при обнаружении воздействия магнитом. Возможные значения реакции:

- Регистрация устанавливается флаг HC, копится счетчик времени воздействия магнитом, расход не обнуляется, накопление объемов продолжается;
- Q=0; Fвых=0 устанавливается флаг HC, копится счетчик времени воздействия магнитом, текущий расход обнуляется, объемы не накапливаются, на частотном выходе отсутствуют импульсы;
- Q=0; Fвых=Fmax устанавливается флаг HC, копится счетчик времени воздействия магнитом, текущий расход обнуляется, объемы не накапливаются, на частотный выход выдаётся заданная максимальная частота.
- 2.3.7. Подгруппа параметров Контроль загрязнения электродов

Вкладка Контроль загрязнения электродов приведена на рис.9:

Контроль загрязнения электродов				
Контроль загрязнения	Индикация	•	4	
Нижний порог, %	0			
Верхний порог, %	50	-		

Рис.9. Вкладка «Контроль загрязнения электродов».

11

В расходомере осуществляется контроль амплитуды сигнала промера пустой трубы. В случае критического загрязнения электродов, когда амплитуда сигнала падает ниже установленного значения, формируется сигнал о загрязнении электродов.

Возможные настройки (проточная часть расходомера должна быть целиком заполнена контролируемой жидкостью):

- **Отключен** не выполняется контроль наличия загрязнения поверхности электродов;
- Индикация в приборе коды текущего сигнала сравнивается с кодами для пустой трубы. При их различии формируется сигнал о нештатной ситуации (см. раздел 5).

Порог срабатывания задается в процентах от эталонного значения (кодов пустой трубы) с помощью параметров **Нижний порог** и **Верхний порог**.

2.4. Установка параметров универсального выхода

2.4.1. Установочные параметры универсального выхода находятся на вкладке **Периферия** основного окна программы «Монитор» в группе **Настройки универсальных выходов** (рис.10).

ВНИМАНИЕ! При выпуске из производства универсальный выход настраивается в соответствии с данными, приведенными в Приложении А.

Рис.10. Вид группы «Настройки универсальных выходов» - «Частотный выход».

2.4.2. Режим работы универсального выхода (Частотный, Импульсный, Логический) задается в группе Тип выхода. Для этого необходимо щелком мышки по соответствующей кнопке выбрать требуемый режим, а затем нажать кнопку <Записать>.

В соответствии с заданным режимом работы универсального выхода изменяется наименование и набор установочных параметров панели, расположенной правее группы **Тип выхода**.

2.4.3. Частотный режим (Тип выхода Частотный)

В частотном режиме на универсальный выход поступает импульсная последовательность типа «меандр» со скважностью 2 и нормированным весом импульса. Частота следования импульсов пропорциональна среднему объемному расходу, измеренному в течение предыдущих 80 мс, предельная частота – 500 Гц.

При работе в частотном режиме задаются значение коэффициента Константа преобразования (имп/л), а также значения параметров Максимальная частота (панель Частотный выход) и уровень сигнала в панели Активный уровень.

 Константа преобразования. По умолчанию при выпуске расходомеров из производства для универсального выхода устанавливается частотный режим работы и значения параметра Константа преобразования, указанные в Приложении А.

Параметр Константа преобразования, определяющий вес импульса в частотном режиме, может устанавливаться в пределах от 0,0001 до 9999 имп/л.

Для определения значения параметра Константа преобразования с учетом максимального значения расхода в трубопроводе, где будет устанавливаться расходомер, а также частотных свойств приемника импульсного сигнала можно воспользоваться формулой:

Константа преобразования [имп/л]
$$\leq \frac{3.6 \cdot F}{Q_{\text{макс}}} = \frac{1.8 \cdot 10^3}{Q_{\text{макс}} \cdot \tau_{\text{м}}}$$

где Q_{макс} – максимальный эксплуатационный расход в трубопроводе, м³/ч;

- F максимально допустимая для приемника частота следования импульсов расходомера, Гц;
- ти = 0,5·Ти минимально допустимая для приемника длительность импульсов расходомера, мс;
- Т_и период следования импульсов на выходе расходомера, мс.
 - Назначение выхода в частотном режиме задается установками, приведенными в табл.2.

Таблица 2

Режим работы выхода	Обозначение в программе «Монитор Взлет СК»	Условие формирования сигнала / изменения состояния на выходе
	Расход по модулю Расход при любом направлении потон	
Положительный Частотный расход		Расход при прямом (положительном)
		направлении потока
	Отрицательный	Расход при обратном (отрицательном)
	расход	направлении потока

 Расход по модулю – импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе при любом направлении потока.

- Положительный расход импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе только при прямом направлении потока.
- Отрицательный расход импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе только при обратном направлении потока.

Максимальная частота – частота, соответствующая максимальному расходу в данном трубопроводе. Превышение на выходе значения параметра **Максимальная частота** диагностируется в расходомере как нештатная ситуация, т.е. заданное для данного выхода значение константы преобразования некорректно.

Активный уровень – это уровень сигнала (Высокий или Низкий), соответствующий наличию импульса. Электрические параметры уровней сигнала приведены в Приложении Б части I настоящего руководства.

2.4.4. Импульсный режим (Тип выхода Импульсный)

В импульсном режиме выходы могут использоваться для вывода результатов измерения в виде импульсной последовательности типа «меандр» со скважностью 2 и нормированным весом импульсов.

В импульсном режиме работы в течение секунды на выход поступает пачка импульсов, количество которых с учетом веса импульса соответствует объему, измеренному за предыдущую секунду. Максимальная частота следования импульсов, как и в частотном режиме не превышает 500 Гц.

Параметры настройки выходов для импульсного режима работы находятся на панели **Импульсный выход** (рис.11).

Универсальный вы»	код	Тест выходов	
Гип выхода С Отключен С Логический Э Импульсный С Частотный	сный выход	Константа преобразования, имп/л Период импульсов, мс Максимальная частота	3,3 2 100,000
Активный уровень (• "Низкий" С "Высокий" Записать		Связь С Объем по модулю С Объем прямой С Объем обратный	

Рис.11. Вид панели «Импульсный выход».

При работе в импульсном режиме задаются значения параметров **Период импульсов**, **Константа преобразования**, расчет которого может быть выполнен по той же формуле, что и для частотного режима, а также **Активный уровень**.

 Период импульсов – период следования импульсов в пачке; может быть задано значение от 2 до 1000 мс, т.е. частота следования импульсов от 500 до 1 Гц.

Назначение выхода в импульсном режиме задается установками, приведенными в табл.3.

Таблица 3

Режим работы	Обозначение в программе	Условие формирования сигнала /
выхода	«монитор взлет Ск»	изменения состояния на выходе
Объем по модулю		Объем при любом направлении потока
Импульсный	Объем прямой	Объем при прямом направлении потока
	Объем обратный	Объем при обратном направлении потока

- Объем по модулю импульсы, количество которых пропорционально измеренному значению объема, поступают на выход при любом направлении потока.
- Объем прямой импульсы, количество которых пропорционально измеренному значению объема, поступают на выход только при прямом направлении потока.
- Объем обратный импульсы, количество которых пропорционально измеренному значению объема, поступают на выход только при обратном направлении потока.

2.4.5. Логический режим (Тип выхода Логический)

В логическом режиме на выходе наличию события (или его определенному состоянию) соответствует один уровень электрического сигнала, а отсутствию события (или иному его состоянию) – другой уровень сигнала.

Параметры настройки выходов для логического режима работы находятся на панели **Логический выход** (рис.12).

Программно для логического режима задается его назначение и значение параметра Активный уровень.

Рис.12. Вид панели «Логический выход».

Назначение выхода в логическом режиме задается установками, приведенными в табл.4.

Таблица 4

Режим работы выхода	Обозначение в программе «Монитор Взлет СК»	Условие формирования сигнала / изменения состояния на выходе	
	Обратное направление потока	Изменение направления потока жидкости в тру- бопроводе	
	Ошибка Q > Qмакс	Превышение значения Qмакс	
Логический	Любая ошибка	Любая ошибка, диагностируемая расходомеро	
	Флаг наличия питания ("Высокий")	Отсутствие сетевого питания	
	Пустая труба	Значение сопротивления выше установленного порогового значения для заполненной трубы	
	Обр.направ.потока для теплоучета	Изменение направления потока жидкости в тру- бопроводе с учетом времени инерции	

- Обратное направление потока уровень сигнала на выходе изменяется без задержки при изменении направления потока в трубопроводе.
- Ошибка Q > Qмакс уровень сигнала на выходе изменится, если измеренное значение расхода превысит значение Qмакс для данного DN расходомера.
- Любая ошибка уровень сигнала на выходе изменится при возникновении любой нештатной ситуации, диагностируемой прибором.
- Флаг наличия питания ("Высокий") при наличии напряжения питания на выходе формируется Высокий уровень сигнала, при напряжении питания ниже допустимого напряжение на выходе отсутствует.

- Пустая труба уровень сигнала на выходе изменится, если включенный алгоритм определения заполнения трубопровода сигнализирует о его неполном заполнении.
- Обр.направ.потока для теплоучета изменение уровня сигнала на выходе произойдет только, если длительность времени изменения направления потока превысит заданное время инерции; значение параметра Т инерции потока может быть установлено в диапазоне от 0 до 60 мин; значение параметра Активный уровень соответствует прямому направлению потока.
- 2.4.6. Проверка универсальных выходов

В расходомере предусмотрена возможность проверки работоспособности универсальных выходов в частотном режиме. Установочные параметры для проведения тестирования находятся в группе Настройки универсальных выходов на вкладке Тест выходов (рис.13).

Mонитор ВЗЛЕТ СК, версия 1.4	
Измерения Настройки Периферия Архивы Контрольная инфор	л рмация Параметры программы
Прочитать все Настройки универсальных выходов Универсальный выход Тест выходов Тест частотных выходов Тест Выкл • • F1, Гц 0.0 •	Настройки связи Сетевой адрес 1 Задержка RTS, мс 50 ↓ Скорость, бод 19200 ▼ М/б задержка, мс 0 ↓
	Протокол RTU ModBus

Рис.13. Вид вкладки «Тест выходов».

Задаваемая тестовая частота **F1** для универсального выхода не должна превышать значения 500 Гц.

После запуска процедуры тестирования (**Тест Вкл.**) кнопкой измерить частоту на универсальном выходе с помощью частотомера.

ВНИМАНИЕ! Так как универсальный выход расходомера находится в пассивном режиме, для измерения частоты необходимо внешнее питание выхода в соответствии с рекомендациями, приведенными в Приложении Б части I настоящего руководства.

2.5. Установка параметров связи прибора

Для изменения настроек связи расходомера и ПК в группе **Настройки связи** на вкладке **Настройки** (рис.14) могут быть установлены следующие параметры:

- Сетевой адрес целое число от 1 до 247;
- Задержка RTS задержка ответа по RS-интерфейсу, мс;

- Скорость скорость обмена в сети (по умолчанию 19200 бод);
- М/б задержка межбайтовая задержка, мс;
- Протокол сетевой протокол (по умолчанию RTU ModBus).

Настройки связи	
Сетевой адрес	1
Задержка RTS, мс	10 4
Скорость, бод	19200 💌
М/б задержка, мс	4
Протокол	RTU ModBus 💌 🛃
Сброс настрое	к связи по умолчанию

Рис.14. Вид вкладки «Настройки связи».

При нажатии на кнопку **Сброс настроек связи по умолчанию**> восстанавливаются заводские настройки связи.

ПРИМЕЧАНИЕ. При изменении параметров Сетевой адрес и Скорость необходимо продублировать эти изменения на вкладке Параметры программы.

2.6. Ввод пароля

После завершения всех настроек расходомер необходимо перевести в режим РАБОТА. Перед этим требуется ввести пароль для последующего перевода расходомера в режим СЕРВИС. Ввод пароля в программе «Монитор» производится во вкладке Контрольная информация / Пароль режима «Сервис» (см. рис. 15):

Пароль режи	има "Серви	с"
Установка	1234	4
Ввод	1234	4
Режим	СЕРВИС	

Рис.15. Вкладка «Пароль режима «Сервис»

Паролем является любое четырехзначное число, которое вводится в строке **Установка**. После ввода пароля расходомер необходимо перезапустить, отключив и снова включив питание. После перезапуска расходомер автоматически устанавливается в режим РАБОТА, в котором невозможна модификация никаких параметров.

Для перевода расходомера в режим СЕРВИС необходимо ввести установленный пароль в строке **Ввод**. В случае ввода неправильного пароля, расходомер остается в режиме РАБОТА.

ВНИМАНИЕ! Запомните или запишите в паспорт введенный в прибор пароль, т.к. при неправильном вводе пароля, для разблокировки прибора, необходимо обращение в сервисный центр!

3. ПОРЯДОК РАБОТЫ

3.1. Индикация измеряемых параметров

- 3.1.1. Введенный в эксплуатацию расходомер работает непрерывно в автоматическом режиме. Текущие значения измеряемых параметров отображаются в группе Текущие значения на вкладке Измерения основного окна программы «Монитор».
- 3.1.2. После запуска программы «Монитор» (см. п.2.1) на вкладке Измерения отображаются нулевые значения текущих измеряемых параметров и накопленные значения времени наработки и объемов за предыдущие измерения (рис.16).

Текущие значения Расход максимальный 1811,200 Расход текущий 0,000	, л/мин 108,672 ,м3/ч
Расход максимальный 1811,200 , Расход текущий 0,000 ,	, л/мин 108,672 ,м3/ч
Расход текущий 0,000 ,	
	, л/мин 0,000 ,м3/ч
Текущее время и дата	21/11/18 10:21:23
Время наработки, ч	3422,56
Суммарный объём, м3	-523,658317
Объём в прямом напр., м3	137,901406
Объём в обратном напр., м3	661,559722
Время воздействия магнитом, ч	842,62
Выходная частота УВ1, Гц 🛛	0,000
Выходная частота УВ2, Гц	0,000

Рис.16. Фрагмент вкладки «Измерения».

Для получения индикации текущих измеренных значений необходимо нажать кнопку **«Старт чтения»**.

3.1.3. Индикация параметров группы **Текущие значения** показана на рис.17.

Серийный номер 123456	Диаметр, мм 80	
Текущие значения		
Расход максимальный 1811,200	, л/мин 108,672 ,м3/ч	
Расход текущий 181,120	, л/мин 10,867 ,м3/ч	
Текущее время и дата	21/11/18 10:21:23	
Время наработки, ч	3422,56	
Суммарный объём, м3	-523,658317	
Объём в прямом напр., мЗ	137,901406	
Объём в обратном напр., м3	661,559722	
Время воздействия магнитом, ч	842,62	
Выходная частота УВ1, Гц	50,00	
Выходная частота ЧВ2 Ги	0,000	

Рис.17. Индикация измеренных значений расхода.

3.1.4. Измеряемые параметры расхода:

 Расход текущий – объемный расход при любом направлении потока (л/мин, м³/ч);

Значение параметра **Расход максимальный** записывается в память расходомера при выпуске из производства в соответствии со значением DN первичного преобразователя (строка **Диаметр**, **мм**).

- Суммарный объем алгебраическая сумма (с учетом знака) значений объемов при прямом и обратном направлении потока (м³);
- Объем в прямом напр. объем при прямом направлении потока, учитывается со знаком плюс (м³);
- Объем в обратном напр. объем при обратном направлении потока, учитывается со знаком минус (м³);

В подгруппе **Текущие значения** также отображаются **Текущее время и дата**, значение параметра **Время наработки** (ч), значение параметра **Время воздействия магнитом** (ч), а также текущее значение частоты на универсальном выходе 1: **Выходная частота УВ1**, Гц.

3.1.5. Индикация параметров группы Состояние прибора показана на рис.18.

Состояние прибора				
Инициализация	Bce OK			
Контрольная сумма ПО	0x1A9E			
Контрольная сумма базы	0x7C20			
Режим работы	СЕРВИС			
Направление	Обратный			
Направ.в т.у.	Обратный			
Диапазон	Малый			
Внешний адрес	Нет 0			

Рис.18. Индикация состояния прибора.

3.1.6. Индицируемые параметры группы Состояние прибора:

- Инициализация параметр отображает состояние настройки прибора, в случае отображения символов, отличных от Все ОК, прибор необходимо отправить на ремонт;
- Контрольная сумма ПО контрольная сумма внутреннего ПО расходомера;
- Контрольная сумма базы контрольная сумма базы настроек прибора;
- Режим работы отображение текущего режима работы прибора.
- Направление направление потока в трубопроводе;
- Направ. в т.у. направление потока в трубопроводе с учетом времени инерции;
- Диапазон диапазон работы прибора (Большой, Средний или Малый);
- Внешний адрес адрес адаптера интерфейса, используемого при калибровке и поверке расходомера.

3.2. Контрольные параметры расходомера

- 3.2.1. Для оперативного контроля основных метрологических и функциональных параметров прибора в ПО «Монитор ВЗЛЕТ СК» присутствует вкладка Контрольная информация.
- 3.2.2. Группа параметров с контрольной информацией показана на рис.19.

Серийный номер	123456 Диам	етр, мм 80	
Границы диапазонов, %Qмакс 0,00 — 100,00 100,00 — 100,00 100,00 — 100,00			
Малый расход Средний расход Большой расход К0+ 1,2700000 К1+ 1,2700000 P0+ 0,0000000 P1+ 0,0000000 K0- 1,2700000 K1- 1,2700000 F0- 0,0000000 P1+ 0,0000000 P0- 0,0000000 P1- 0,0000000			
Информация о действиях пользователя Количество переходов в режим "Сервис" 27 Количество переходов в режим "Настройка" 15 Количество записей в журнале событий 427			
Информация о программном обеспечении			
Контрольная сумма исполняемого кода Ох1А9Е			

Рис.19. Вид группы параметров с контрольными параметрами прибора.

- 3.2.3. Группа параметров Границы диапазонов, %Qмакс показывает в каком диапазоне расходов в процентах от максимального используются метрологические коэффициенты К и Р, отображаемые в группах Малый расход, Средний расход и Большой расход соответственно.
- 3.2.4. Группа параметров **Информация о действиях пользователя** отображает число переходов в режимы СЕРВИС и ПОВЕРКА, а также общее количество изменений в сервисном и поверочном журналах.

Прочитать сервисные и поверочные журналы можно с помощью соответствующего ПО, размещенного на сайте по адресу www.vzljot.ru.

3.2.5. Параметр **Контрольная сумма исполняемого кода** отображает контрольную сумму ПО расходомера.

3.2.6. Группа параметров, показанных на рис.20, отображает служебные параметры прибора и предназначена для диагностирования неисправностей прибора специалистами сервисных организации.

Эталонные опорные уровни		
Верхняя опора	1772265	
Смещение	11869	
Текущие опорные уровни		
Верхняя опора	1772351	
Смещение	11760	
Сопротивление катушек		
R исходное, Ом	31,1	
R текущее, Ом	27,1	

Рис.20. Служебные параметры прибора.

4. СОХРАНЕНИЕ И ВОССТАНОВЛЕНИЕ КОНФИГУРАЦИИ РАСХОДОМЕРА

4.1. Порядок работы при сохранении и восстановлении конфигурации расходомера

4.1.1. Программа «Универсальный просмотрщик» позволяет сохранять конфигурационную базу параметров прибора и загружать в него сохраненную конфигурацию. Считывание всей базы параметров возможно в любом режиме работы расходомера. Возможность записи в расходомер параметров из сохраненной ранее конфигурации определяется установленным режимом работы.

В режиме НАСТРОЙКА доступны для записи настройки универсального выхода, связи и ряд параметров алгоритма измерения расхода (например, отсечки). Также в режиме НАСТРОЙКА возможна загрузка в прибор любых параметров из сохраненной конфигурации.

ПРИМЕЧАНИЕ. В случае восстановления или загрузки конфигурационной базы в режиме НАСТРОЙКА необходимо проведение внеочередной поверки прибора.

4.1.2. Операции по сохранению и восстановлению конфигурации могут проводиться на заводе-изготовителе расходомера или сертифицированными сервисными центрами (региональными представительствами), имеющими лицензию на право проведения первичной и периодических поверок расходомера.

Таким образом реализуется принцип надежного восстановления ПО расходомера, который является одним из составляющих комплекса средств защиты информации.

- 4.1.3. Для сохранения конфигурационной базы прибора необходимо выполнить ряд нижеперечисленных операций:
 - в программе «Универсальный просмотрщик» выбрать пункт «Проект» / «Конфигурация» / «Сохранить конфигурацию» (рис.21):

Универсальный просмотрщик ModBus - D:\VzIjot\Взле	тС	CK.vpr
оект Соединение Графики Архивы Сервис О	кно	ю Помощь
Открыть Ctrl+	0	
Сохранить Ctrl+	S	
Закрыть Ctrl+f	-4	
Конфигурация	•	🚬 🖬 Сохранить конфигурацию
Библиотека	•	Загрузить конфигурацию
1. Взлет СК.vpr		
2. Лайт М (RTC) архивы+магнит+загрязнения (1).vpr		
Выход	_	
	Универсальный просмотрщик ModBus - D:\VzIjot\B3ле ооект Соединение Графики Архивы Сервис О Открыть Ctrl+ Сохранить Ctrl+ Закрыть Ctrl+ Конфигурация Библиотека 1. Взлет СК.vpr 2. Лайт M (RTC) архивы+магнит+загрязнения (1).vpr Выход	Универсальный просмотрщик ModBus - D:\VzIjot\Взлет ооект Соединение Графики Архивы Сервис Окн Открыть Ctrl+O Сохранить Ctrl+S Закрыть Ctrl+F4 Конфигурация Библиотека 1. Взлет CK.vpr 2. Лайт M (RTC) архивы+магнит+загрязнения (1).vpr Выход

Рис.21. Окно «Универсальный просмотрщик»

- в открывшемся окне «Диалог сохранения конфигурации» выбрать набор параметров, которые будут прочитаны из прибора, установить флаг «Прочитать данные перед сохранением» и нажать кнопку «Далее», дождаться окончания считывания (рис.22):

,	Диалог сохранения конфигурации	x
	🕀 🗹 Измеряемые параметры	
	н. М. Настройки основные	
	щ. • настроики периферии ⊕. • Архивы	
	⊞ V Контрольная информация	
	🗄 🗹 Индикация	
I		
1		
I		
	🔽 Прочитать данные перед сохранением	
	Настройка соединения < <u>Н</u> азад Далее > <u>В</u> ы	ход

Рис.22. Окно «Диалог сохранения конфигурации»

 после окончания считывания всех выбранных параметров станет активной кнопка «Сохранить в файл», нажав которую можно ввести имя файла и сохранить прочитанную конфигурацию (рис.23):

Диалог	сохранения конфигурации		x
Подго	товка данных:		
Наим	иенование объекта	Результат операции	
По Ка Ад Вр Вк По Те Ре Вр Ан Ко По По	рог ПТ либровка ПТ аптивный алгоритм - вкл/выкл. аптивный алгоритм емя инерции смены направления для тепл лючение алгоритма КНП рог для алгоритма КНП кущее время жим перевода емя перевода тимагнитный алгоритм нтроль загрязнения электродов роги для контроля загрязнения электродов ройки периферии	Команда выполнена успешно Команда выполнена успешно	E
Ha	стройка параметров связи	Запрос на чтение отправлен	Ŧ
Ход or Сохр	терации: ранить в файл		
Наст	гройка соединения < <u>Н</u> а:	зад Далее > <u>В</u> ыхс	M

Рис.23. Окно «Диалог сохранения конфигурации» / «Ход операции»

26

- 4.1.4. Для загрузки в прибор параметров из сохраненной ранее конфигурации необходимо выполнить следующие действия:
 - в программе «Универсальный просмотрщик» (рис.21) выбрать пункт «Проект» / «Конфигурация» / «Загрузить конфигурацию» и выбрать файл конфигурации для загрузки (рис.24):

🛯 Иг Загрузка кон	фигурации		×
Nan <u>k</u> a:	Vzljot 💌	← 🗈 💣 📰 ◄	
Ca	Имя	Дата изменения	Тип
	🌗 DevFinder	20.11.2018 11:32	Папка с ф
места	퉬 Server	20.11.2018 11:31	Папка с ф
	JBClient UBClient	20.11.2018 11:30	Папка с ф
	JBViewer	20.11.2018 11:30	Папка с ф
Рабочий стол	Взлет CK.vcfg	21.11.2018 12:43	Файл "VC
Библиотеки			
Компьютер			
	۲ [4
Сењ	<u>И</u> мя файла: Взлет CK.vcfg	▼ (<u>О</u> ткрыть
	<u>Т</u> ип файлов: Файл конфигурации	_	Отмена

Рис.24. Окно «Загрузка конфигурации»

- в открывшемся окне «**Диалог загрузки конфигурации**» выбрать набор параметров, которые будут загружены в прибор и нажать кнопку «**Далее**» (рис.25):

Диалог сохранения конфигурации	×
 У Измеряемые параметры У Настройки основные У Настройки периферии У Архивы У Контрольная информация У Индикация 	*
🔽 Прочитать данные перед сохранением	
Настройка соединения < <u>Н</u> азад Далее > <u>В</u> ь	ход

Рис.25. Окно «Диалог загрузки конфигурации»

Процесс загрузки конфигурации в прибор приведен на рис.26:

27

Рис.26. Окно «Диалог загрузки конфигурации» / «Ход операции»

4.2. Журнал действий пользователя (функция регистрации)

Расходомер имеет защищенный журнал действий пользователя. В этом журнале фиксируются изменения всех параметров, за исключением настроек интерфейса связи, а также создаются записи при смене режима работы расходомера, при изменении даты/времени в приборе и при обновлении встроенного программного обеспечения.

Журнал действий пользователя имеет размер 3000 записей и является не перезаписываемым. При его заполнении дальнейшая модификация настроечных и калибровочных параметров (т.е. всех, кроме настроек связи) становится невозможной: при попытке записи по протоколу ModBus прибор возвращает код 4 («Ошибка доступа»).

Запись в журнале действий пользователя имеет следующий формат:

- время фиксации события по встроенным часам реального времени в UNIX-формате с точностью до секунды;
- идентификатор типа события или модифицируемого параметра;
- значение параметра перед изменением;
- значение параметра после изменения.

Записи журнала действий пользователя доступны для чтения по протоколу ModBus в любом режиме работы прибора с помощью сервисной программы «Чтение журналов действий пользователя».

5. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

5.1. Неисправности (ошибки) и нештатные ситуации, диагностируемые расходомером, отображаются в группе **Состояние расходомера** на вкладке **Измерения** (рис.27).

Сост	Состояние расходомера				
	<u>Ошибки</u>				
0	Ошибка режима (разрушение базы параметров)				
0	Некорректная опора				
0	Qт > Qмакс				
0	Ошибка выхода 2				
0	Ошибка выхода 1				
0	Устойчивый зашкал				
0	Ошибка памяти				
	Пустая труба				
Ō	Низкое напр-е питания				
0	Нет нулевого потенциала				
Ō	Воздействие магнитом				
Ō	Загрязнение электродов				

Рис.27. Вид индикации сообщений об ошибках.

 5.2. При диагностировании неисправности (ошибки) или НС начинается индикация символа ● (круг красного цвета) перед соответствующим наименованием в подгруппе <u>Ошибки</u>.

Перечень неисправностей (ошибок) и нештатных ситуаций, диагностируемых расходомером, приведен в табл.5.

Таблица	5
---------	---

Вид индикации на дисплее ПК в про- грамме «Монитор Взлет СК»	Содержание неисправности, нештатной ситуации
Ошибка режима (разрушение базы параметров)	Повреждение структуры ПО прибора
Некорректная опора	Нет промера опорного сопротивления, аппаратная неисправность
Q т>Qмакс	Текущее значение расхода превышает значение Qмакс для дан- ного DN
Ошибка выхода 1	Некорректное значение Константы преобразования по выходу 1
Устойчивый зашкал	Уровень выходного сигнала усилителя выше допустимого
Ошибка памяти	Неисправна микросхема памяти EEPROM
Пустая труба	Значение сопротивления выше заданного (пустая труба)
Низкое напр-е питания	Питание прибора ниже допустимого
Нет нулевого потенциала	Нет контакта нулевого потенциала с водой
Воздействие магнитом	Зафиксировано наличие внешнего магнитного поля в непосред- ственной близости от расходомера
Загрязнение электродов	На электродах расходомера образовался налет

- 5.3. При появлении на дисплее ПК сообщений: Некорректная опора, Ошибка памяти, или Ошибка режима (разрушение базы параметров) прибор необходимо отправить в ремонт.
- 5.4. В случае индикации других символов и/или отсутствия измерительной информации следует проверить:
 - наличие и соответствие нормам напряжения питания на входе расходомера и источника вторичного питания;
 - наличие источника магнитного поля в непосредственной близости от расходомера;
 - надежность подсоединения цепей питания;
 - наличие жидкости и ее движения в трубопроводе;
 - отсутствие скопления газа в месте установки расходомера;
 - отсутствие налета (отложений) на электродах;
 - значение температуры окружающей среды в месте установки расходомера;
 - корректность значений параметров Константа преобразования, отсечек по расходу и других установочных параметров; при необходимости изменить их значения.

При положительных результатах перечисленных выше проверок следует обратиться в сервисный центр (региональное представительство) или к изготовителю изделия для определения возможности его дальнейшей эксплуатации.

ПРИМЕЧАНИЕ. В случае возникновение НС **Ошибка памяти** измерение расхода и накопление объемов продолжается, но становится невозможно изменение параметров расходомера, записанных в журнал сервисных данных.

- 5.5. Если при наличии движения жидкости в контролируемом трубопроводе в приемнике выходного импульсно-частотного сигнала расходомера не меняется значение измеряемого объема, необходимо проверить соответствие режима работы оконечного каскада универсального выхода расходомера режиму входа приемника сигнала.
- 5.6. Расходомер «ВЗЛЕТ СК» по виду исполнения и с учетом условий эксплуатации относится к изделиям, ремонт которых производится на специализированных предприятиях, либо предприятии-изготовителе.

ПРИЛОЖЕНИЕ А. Типовые значения установочных параметров

Таблица А.1. Типовые значения установочных параметров универсального выхода расходомера для однонаправленного потока

Параметр	Универсальный выход
1. Режим работы	Частотный
2. Назначение	Расход прямой
3. Коэффициент преобразования	по табл. А.2
4. Отсечки снизу по расходу	0,001Q _{макс}
5. Максимальная частота	100 Гц при Q _{макс}
6. Уровень сигнала	Низкий
7. Время инерции	
8. Режим работы оконечного каскада	Пассивный

Таблица А.2. Типовые значения коэффициента преобразования для универсального выхода

DN	80	100	150	200	250	300
Fмакс, Гц		100				
Q _{макс} , м ³ /ч	108,7	169,2	382	679	1062	1528
(л/мин)	1811,7	2820	6367	11317	17700	25467
Коэффициент преобразования, имп/л	3,3	2,1	0,9	0,5	0,3	0,2

Таблица А.3. Значения расходов для разных типоразмеров, соответствующие типовому значению отсечки

DN	80	100	150	200	250	300
Отсечка, м ³ /час	0,108	0,169	0,382	0,679	1,062	1,528

re2 sk-xxxx doc1.0

